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We study the question of existence and uniqueness for the finite temperature
Kohn-Sham equations. For finite volumes, a unique soluion is shown to exists if
the effective potential satisfies a set of general conditions and the coupling con-
stant is smaller than a certain value. For periodic background potentials, this
value is proven to be volume independent. In this case, the finite volume solu-
tions are shown to converge as the thermodynamic limit is considered. The local
density approximation is shown to satisfy the general conditions mentioned
above.
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1. INTRODUCTION

For a self-interacting N-body quantum system with a background potential u,
the finite temperature Kohn-Sham equations consist of:

˛ ( − 1
2 D+u+n f v+vxc[n]) gm=emgm

n(xF)=C
m

(1+eb(em − m))−1 |gm(xF)|2,
(1)

where the value of the chemical potential is found from:

N=C
m

(1+eb(em − m))−1. (2)



The exchange-correlation potential vxc[n] may have a complicated func-
tional dependence on the particle density. However, it acts on the Kohn-
Sham orbitals as a regular potential, by multiplying the orbitals with a
function. (1)

These equations determine the density of particles at the thermody-
namic equilibrium of the system. The zero temperature formalism proposed
by Hohenberg and Kohn, (2) now known as the Density Functional Theory,
can be extended to finite temperatures if, instead of the ground state
energy, one considers the grand canonical potential. (3) In this case, one can
show that the grand canonical potential is a functional of the particle
density. This functional achieves its minimum for the equilibrium particle
density. Eqs. (1) and (2) represents the Euler-Lagrange equations asso-
ciated with this functional. (4, 5) In contrast to the zero temperature case, the
finite temperature Kohn-Sham equations involve an infinite set of orbitals.
In practical applications however, one only has to consider the orbitals
with energies up to m+kBT. Above this limit, the contribution to the
density of particles Eq. (2) becomes negligible. The finite temperature for-
malism has a major advantage over the zero temperature formalism in that
it avoids the problem associated with the degeneracy of the last occupied
energy level.

While most of the work on these equations has been concerned with
rigorous derivations or finding better and better approximation of the
exchange-correlation potential, little it is known about their solutions. (6, 7)

Computational physicists often assume that the Kohn-Sham equations
have a unique solution. The same assumption has been made for long time
for models like Hartree or Hartree-Fock. Despite many efforts however,
the uniqueness is still an open problem for these models (8) and only little
advance (9–11) has been made in this direction. Moreover, the symmetry
breaking within these models (12, 13) shows that the uniqueness can be a very
delicate problem.

The first goal of this paper is to search for those conditions on the
effective potential that guarantee the existence and uniqueness of a solution
for the Kohn-Sham equations on a finite volume. The conditions will be
formulated at an abstract level, without making references to any explicit
expression or approximation of the exchange correlation potential. We will
show in the last section that these abstract conditions are general enough to
include the local density approximation.

The Kohn-Sham equations are derived from the Kohn-Hohenberg (2)

functional. This functional is based on the assumption that the density of
particles is v-representable. Despite many efforts, the v-representability
problem has not been yet rigorously solved for infinite volume. A func-
tional that does not require v-representability has been proposed by
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Lieb. (14) Unfortunately, this new functional does not automatically lead to
the Kohn-Sham equations. It was shown however that, for finite volumes,
the Kohn-Hohenberg and Lieb functionals coincide. (1) The relation
between the two functionals is not yet completely understood for infinite
volume. The thermodynamic limit of the Kohn-Sham equations can there-
fore be considered as a fundamental issue in density functional theory. We
believe that the unsolved part of the v-representability problem can be
avoided by studying the thermodynamic limit of the finite volume Kohn-
Sham equations instead of considering the infinite volume.

The second goal of this paper is to find the general conditions on the
effective potential which guarantee that the finite volume solutions of the
Kohn-Sham equations have a well defined thermodynamic limit. Our solu-
tion to this problem applies only for periodic background potentials.

Within the local density approximation, partial results on the Kohn-
Sham equations have been reported in ref. 10. The methods developed
there could not be used for realistic exchange-correlations potentials. The
main obstacle was the low density behavior of realistic exchange-correla-
tions potentials. In the last section of this paper we will show how this
problem can be solved. We will show that the local density approximation
of the exchange-correlation potential satisfies the abstract conditions
mentioned above.

2. THE FIXED POINT APPROACH

We assume in the following that the background potential comes from
the interaction of the particles with background charges of opposite sign,
which are considered fixed and given. In this case, the Kohn-Sham
equations take the following form:

˛ ( − 1
2 D+(n − n0) f v+vxc[n]) gm=emgm

n(xF)=C
m

(1+eb(em − m))−1 |gm(xF)|2.
(3)

We also consider a system which is charge neutral:

F
vol

(n(xF) − n0(xF)) dxF=0. (4)

The chemical potential must be adjusted such that the above condition is
satisfied. The neutrality condition will play an essential role when long
range interactions are considered and it will help us to improve our pre-
vious estimates on the Hartree potential. (11) We borrowed the idea from the
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homogeneous electron gas where it is known that the neutrality condition is
essential when the thermodynamic limit is considered. (15) Also, the neutrality
or partial neutrality condition play an essential role in the Hartree-Fock
model when applied to Coulomb systems. (16, 17) The neutrality condition
will be further discussed at the end of Section 3.

Let us denote the Kohn-Sham Hamiltonian and the effective potential
by:

Hn= − 1
2 D+lV[n] (5)

V[n]=(n − n0) f v+vxc[n],

and the Fermi-Dirac distribution by:

FFD(t)=(1+ebt)−1. (6)

For finite volumes, we now formulate the Kohn-Sham equations as a fixed
point problem. In this case, D is the Laplace operator over the volume vol
constrained by various boundary conditions.

Theorem 1 (The Fixed Point Approach). Let SN … L1(vol) be
defined as:

SN={n ¥ L1(vol), ||n||L1(vol)=N}. (7)

Suppose that for n ¥ SN and a > 0 the following condition is satisfied:

||V[n]( − 1
2 D+a)−1|| [ ca, (8)

where ca may depend on N. Then the map:

T: SN
Q SN (9)

SN ¦ n Q T[n](xF)=FFD(Hn − mn)(xF, xF)

is well defined. Here, mn represents the unique solution of the equation:

N=Tr FFD(Hn − mn). (10)

Moreover, the fixed points of the map T generates all the solutions of the
Kohn-Sham equations.

Let us prove first the following result which will be used many times in
the following.
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Lemma 2. Let H0 be a self-adjoint, bounded from below Hamilto-
nian and suppose that exp( − H0) is of trace class. Let V be a self-adjoint
potential such that, for a > |inf s(H0)|:

||V(H0+a)−1|| [ ca. (11)

Then H=H0+lV is self-adjoint and:

Tr fj, m[(1+lca) H0+laca] [ Tr (1+eb(H − m))−j

[ e jb(m+laca) Tr e−jb(1 − lca) H0, (12)

where fj, m, j=1, 2,..., are monotone decreasing, convex functions on
[E0, .), E0=inf s(H), such that:

fj, m(t) [ (1+eb(t − m))−j. (13)

All functions fj, m(t) can be chosen such that limm Q . fj, m(t)=1 and
fj, m(t) > 0.

Proof. We will use classical techniques from ref. 18. We start with
the first inequality. Let {g0

m, e0
m}m be the eigenvectors and the correspond-

ing eigenvalues of H0. g0
m ¥ D(H) and we can write:

Tr (1+eb(H − m))−j \ Tr fj, m(H) \ C
m

fj, m(Og0
m, Hg0

mP)

=C
m

fj, m((e0
m+a)Og0

m, (I+lV(H0+a)−1) g0
mP− a)

\ C
m

fj, m((1+lca) e0
m+laca)

=Tr fj, m((1+lca) H0+laca). (14)

For the second inequality, let {gm,em}m be the eigenvectors and the corre-
sponding eigenvalues of H. Then:

e jb(a+m) Tr e−jb(1 − lca)(H0+a) \ e jb(a+m) C
m

e−jb(1 − lca)Ogm, (H0+a) gmP

=e jb(a+m) C
m

e−jb(1 − lca)(em+a)Ogm, (I+lV(H0+a) − 1) − 1
gmP

\ e jb(a+m) C
m

e−jb(1 − lca)(em+a)/(1 − lca)

\ Tr (1+eb(H − m))−j. L (15)
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Proof of Theorem 1. We need to show that Eq. (10) has a unique
solution for all n ¥ SN. From the previous Lemma,

d
dm

Tr FFD(Hn − m)=be−bm Tr (1+eb(Hn − m))−2

\ be−bm Tr f2, m
1 −

1
2

(1+lca) D+laca
2 . (16)

The last term is strictly positive when we choose f2, m > 0. Also, from the
previous Lemma, it follows that the above derivative is finite. Then the
right hand side of Eq. (10) is a strictly monotone, continuous function of m.
As we already mentioned, fj, m can be chosen such that fj, m Q 1 as m goes
to +.. Then one can see from

Tr f1, m[ − 1
2 (1+lca) D+laca] [ Tr FFD(Hn − m)

[ eb(m+laca) Tr eb/2(1 − lca) D, (17)

that, as m is varied from − . to +., the right hand side of Eq. (10) varies
from 0 to +.. This, combined with the strict monotonicity and continuity,
allows us to conclude that Eq. (10) has a unique solution. Using the
eigenvectors and theeigenvalues of Hn,

( − 1
2 D+(n − n0) f v+vxc[n]) gm=emgm, (18)

the fixed point equation for T reduces to

n(xF)=C
m

(1+eb(em − mn))−1 |gm(xF)|2. (19)

Equations (18) and (19) represent exactly the Kohn-Sham equations. L

The fixed points of the map T generates all the solutions of the Kohn-
Sham equations because SN is the largest set where these solutions can be
found. Another important observation is that there exists an upper and
lower limit on the chemical potential, limits which may depend in general
on the number of particles. This can be seen from:

Tr f1, mn
[ − 1

2 (1+lca) D+laca] [ N [ eb(mn+laca) Tr eb/2(1 − lca) D. (20)

For periodic background potentials however, we will show that this limits
are independent of the number of particles.
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3. THE KOHN-SHAM EQUATIONS WITH PERIODIC BACKGROUND

POTENTIALS

In the following we consider a background charge distribution which
is periodic with respect to a lattice C,

C=3xF ¥ R3, xF= C
3

i=1
n idFi, n i ¥ Z4 , (21)

i.e., n0(xF+RF )=n0(xF) almost everywhere when RF ¥ C. dFi, i=1, 3, represent
three linearly independent vectors in R3. Let us also consider a finite crystal
confined in the volume:

V=3xF ¥ R3, xF= C
3

i=1
a idFi, 0 [ a i [ K4 , (22)

where K is a positive integer. We denote the crystal’s unit cell by:

cell=3xF ¥ R3, xF= C
3

i=1
a idFi, 0 [ a i [ 14 . (23)

Thus, the crystal is formed from K3 unit cells. We impose periodic bound-
ary conditions and we also allow the particles on opposite faces of the
crystal to interact to each other. The resulting problem is that of particles
trapped on a torus T obtained by connecting the opposite faces of the
crystal. Any point from R3 can be viewed as a point of the torus. The
kinetic term of the Kohn-Sham Hamiltonian is given by − 1

2 D, where D

represents the Laplace operator over the torus T. We will assume that the
particles interact via a two-body potential which depends only on the
distance between particles:

v(xF, yF)=v(|xF, yF|) , xF, yF ¥ T, (24)

where | · , · | denotes the distance on the torus. In this case, the potential
generated by the background charge is C-periodic. Indeed, for RF ¥ C:

F
T

v(|xF+RF , yF|) n0(yF) dyF=F
T

v(|xF, yF− RF |) n0(yF) dyF

=F
T

v(|xF, yF|) n0(yF+RF ) dyF

=F
T

v(|xF, yF|) n0(yF) dyF, (25)
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where we also used that the measure dyF is invariant at translations. We will
assume that the exchange-correlation potential is C-periodic when the
density of particles is C-periodic. In this case, the set of C-periodic density
of particles:

SN
per={n ¥ SN, n(xF+RF )=n(xF) a.e., RF ¥ C} (26)

is invariant for the map T. In this paper, we will search for the fixed points
of the map T only in this invariant set. Thus, from now on, we will restrict
T to SN

per. For finite volume, the above system include also the case of
nonperiodic background potentials. To include such systems, the unit cell is
taken equal to the entire volume. Let us denote by N0=N/K3 the number
of particles per unit cell. The thermodynamic limit is defined by fixing N0

and letting the number of unit cells to go to infinity.
Let us consider the following unitary transformation:

U: L2(T) Q Â
q ¥ LK

L2[cell]

L2(T) ¦ f Q Â
q ¥ LK

(Uf)q

(Uf)q (xF)=K−3/2 C
m ¥ LK

e−iS3
j=1mj

h
j
qf(xF+S3

j=1m jdFj),

(27)

where hFq=2p
K qand LK={0, 1, ..., K − 1}3. For n ¥ SN

per, the Kohn-Sham
Hamiltonian is C-periodic and consequently: (19)

UHnU−1= Â
q ¥ LK

( − 1
2 DhFq +lV[n]) — Â

q ¥ LK

H (q)
n , (28)

where DhF is the Laplace operator over the unit cell with the following
boundary conditions:

f(xF+dFj)=e ihj
f(xF) and f −(xF+dFj)=e ihj

f −(xF) (29)

for xF and xF+dFj on the faces of the unit cell. The symbol f − stands for the
derivative of f along dFj. V[n] in Eq. (28) is just the restriction of the effec-
tive potential to the unit cell. Because the kinetic energy and the effective
potential depends on the volume, we will write the Kohn-Sham Hamiltonian
as:

H (K)
n =− 1

2 D+V (K)[n]. (30)
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We will write TK to indicate that the map defined in the previous section
depends on K. Also, because N=K3N0, it will be more convenient to use
the notation SK

per instead of SN
per.

Let us discuss now the neutrality condition. This condition seems arti-
ficial for interactions other than the Coulomb force. However, when the
volume is transformed to a torus and the particles interact via a potential
which depends only on the distance between the particles, one can imme-
diately see that adding a uniform background charge has the effect of a
constant added to the Kohn-Sham Hamiltonian or to the full many-body
Hamiltonian. This does not affect the solutions of the Kohn-Sham equa-
tions or the physiscs of the problem. Thus, we can allways add a uniform
background charge such that the neutrality condition Eq. (4) is satisfied.
The neutrality condition can be regarded as a mathematical artifact.

4. THE RESULT

Our abstract conditions for existence, uniqueness and thermodynamic
limit for the Kohn-Sham equations consist of the following.

(C1) For any hF ¥ [0, 2p)3, n ¥ SK
per and a > 0,

||V(K)[n]( − 1
2 DhF+a)−1|| [ ca, (31)

where it is assumed that ca depends only on a (when N0 is kept fixed).

(C2) There exists a closed set B … L1(cell) such that TK[SK
per] … BK,

where

BK={n ¥ SK
per, n|cell ¥ B}, (32)

and, for n1, 2 ¥ BK, there exists a constant L, independent of K, such that:

||V(K)[n1] − V (K)[n2]||L1(cell) [ L ||n1 − n2 ||L1(cell). (33)

(C3) For n ¥ SK
per,

||V (K+1)[n] − V (K)[n]||L1(cell) Q 0 as K Q ., (34)

where n in V (K+1)[n] represents the unique extension of n in SK+1
per .
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Our main result is given below.

Theorem 3. Suppose that (C1)–(C3) are satisfied. Then:

(i) The maps TK are well defined.

(ii) TK have a unique fixed point provided the coupling constant is
smaller than a certain value which is independent of K.

(iii) The thermodynamic limit of the fixed points is well defined.

Because the proof of the first two points and the proof of the third
point of the above Theorem are based on different techniques, we present
them in two separate subsections.

4.1. Existence and Uniqueness for Finite Volume

Proof of Theorem 3. (i) Using the unitary transformation Eq. (27),
for f ¥ L2(T):

Of, V (K)[n]( − 1
2 D+a)−1 fP= C

q ¥ LK

Ofq, V (K)[n]( − 1
2 DhFq +a)−1fqP

[ ca C
q ¥ LK

||fq ||2
L2(cell)=ca ||f||2

L2(T). (35)

Thus, the conditions of Theorem 1 are uniformly satisfied and in conse-
quence, all the maps TK are well defined. From this uniform estimate one
can easily conclude that the spectrum of H (K, q)

n is uniformly bounded from
below, i.e., there exists an E0, independent of K, such that s(H(K, q)

n ) …

[E0, .) and, consequently, s(H (K)
n ) … [E0, .) for all K. We can also show

that the upper and lower limits of the chemical potential do not depend on
the volume. Indeed, using again the unitary transformation Eq. (27),
the inequalities Eq. (20) can be transformed into:

inf Tr f1, mn
( − 1

2 (1+lca) DhF+laca) [ N0 [ eb(mn+laca) sup Tr eb/2(1 − lca) DhF,
(36)

where the infimum and supremum go over all hF ¥ [0, 2p)3. Using the
explicit expressions for the eigenvalues of DhF and the fact that we can chose
f1, m such that limm Q . f1, m=1, we can conclude from above that there exist
mm and mM, independent of K, such that mn ¥ [mm, mM]. For l [ 1, all these
parameters, E0, mm and mM, can be considered l independent. L
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We prepare now for the proof of the second point of Theorem 3. Let
us prove an estimate which will be used many times in the following. Along
this paper, || · ||1 will denote the trace norm.

Proposition 4. Let F be an analytic function in a vicinity of [E0, .)
and V1 and V2 two self-adjoint potentials over the unit cell such that:

||V1, 2 ( − 1
2 DhF+a)−1|| [ ca. (37)

Then,

||F ( − 1
2 DhF+lV1) − F ( − 1

2 DhF+lV2)||1 [ lcF ||V1 − V2 ||L1(cell), (38)

where cF depends only on the function F.

Proof. Using the notation DV=V1 − V2 and ga, z(x)=(x+a)/(x− z),
we can write after simple manipulations:

F 1 −
1
2

DhF+lV1
2− F 1 −

1
2

DhF+lV2
2

=
l

2pi
F dz F(z) ga, z

1 −
1
2

DhF+lV1
211+l 1 −

1
2

DhF+a2
−1

V1
2−1

×1 −
1
2

DhF+a2
−1

DV 1 −
1
2

DhF+a2
−1

×11+lV2
1 −

1
2

DhF+a2
−12−1

ga, z
1 −

1
2

DhF+lV2
2 , (39)

where the integral is on a curve that surrounds [E0, .) and belongs to the
analyticity domain of F. In consequence:

>F 1 −
1
2

DhF+V1
2− F 1 −

1
2

DhF+V2
2>

1

[
l

(1 − lca)2 F |dz| |F(z)| sup
x ¥ [E0, .)

|ga, z(x)|2

×>1 −
1
2

DhF+a2
−1

DV 1 −
1
2

DhF+a2
−1>

1
. (40)
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Let us consider:

A — |DV|1/2 ( − 1
2 DhF+a)−1, (41)

where the square root is defined through the polar decomposition:
DV=S |DV|. We can immediately see that A is a Hilbert-Schmidt operator:

||AA†||1=F
cell

dxF |DV (xF)( − 1
2 DhF+a)−2 (xF, xF)| [ ka ||DV||L1(cell). (42)

We used the fact that ( − 1
2 DhF+a)−2 (xF, xF) can be computed explicitly

and: (11)

( − 1
2 DhF+a)−2 (xF, xF) [ ka, (43)

with ka independent of hF ¥ [0, 2p)3. Then we can continue:

||( − 1
2 DhF+a)−1 DV ( − 1

2 DhF+a)−1||1=||A†SA||1 [ ||A†||HS ||SA||HS

[ ||A||2
HS=||AA†||1, (44)

and this, together with Eqs. (40) and (42), proves the affirmation. We can
also identify cF:

cF=
ka

(1 − lca)2 F |dz| |F(z)| sup
x ¥ [E0, .)

|ga, z(x)|2. L (45)

Proof of Theorem 3. (ii) For n1, 2 ¥ BK one has:

||TK[n1] − TK[n2]||L1(T) [ ||FFD(H(K)
n1

− mn1
) − FFD(H (K)

n1
− mn2

)||1

+||FFD(H(K)
n1

− mn2
) − FFD(H(K)

n2
− mn2

)||1 (46)

Using the monotonicity of the Fermi-Dirac statistics with respect to the
chemical potential we can write:

||FFD(H (K)
n1

− mn1
) − FFD(H(K)

n1
− mn2

)||1

=|Tr FFD(H(K)
n1

− mn1
) − Tr FFD(H(K)

n1
− mn2

)| (47)

At this point we use the fact that:

N=Tr FFD(H(K)
n1

− mn1
)=Tr FFD(H(K)

n2
− mn2

), (48)
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so we can conclude:

||TK[n1] − TK[n2]||L1(T) [ 2 ||FFD(H (K)
n1

− mn2
) − FFD(H(K)

n2
− mn2

)||1

=2 C
q ¥ LK

||FFD(H(K, q)
n1

− mn2
) − FFD(H(K, q)

n2
− mn2

)||1

[ 2lK3cF ||V (K)[n1] − V (K)[n2]||L1(cell)

[ 2lcFL ||n1 − n2 ||L1(T). (49)

A simple analysis of the expression (45) shows that cF is maximum when
mn2

=mM. cF can be also chosen l independent for l [ 1. Thus we proved
that, for l smaller than a certain constant, independent of K, the maps TK

are contractions on the closed, invariant sets BK. This implies that they
have a unique fixed point in BK. Because TK[SK

per] … BK, it follows that TK

have a unique fixed point over the entire SK
per. L

We end this subsection with estimates on the chemical potential.

Proposition 5. For m1, 2 ¥ [mm, mM] and n ¥ SK
per, there exists C and

C − strictly positive constants, independent of K such that:

C |m1 − m2 | [ K−3 |FK(n, m1) − FK(n, m2)| [ C − |m1 − m2 |, (50)

where:

FK(n, m)=Tr FFD(H (K)
n − m). (51)

Proof. The affirmation follows from:

|FK(n, m1) − FK(n, m2)|=:Fm2

m1

dm
“FK(n, m)

“m
: (52)

and from estimates on

“FK(n, m)
“m

=be−bm Tr(1+eb(H(K)
n − m))−2. (53)

These estimates follows from:

be−bmM Tr(1+eb(H(K)
n − mm))−2 [

“FK(n, m)
“m

[ be−bmm Tr(1+eb(H(K)
n − mM))−2,

(54)
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which can be reduced to:

be−bmM inf Tr f2, mm
1 −

1
2

(1+lca) DhF+laca
2

[ K−3 “FK(n, m)
“m

[ be−bmme2b(mM+laca) sup Tr eb(1 − lca) DhF, (55)

by using the unitary transformation (27) and Lemma 2. The infimum and
supremum go over all hF ¥ [0, 2p)3. We can conclude that:

C < K−3 “FK(n, m)
“m

< C − (56)

where C is strictly positive if f2, m > 0, C − < . and both constants do not
depend on K. For l [ 1, these constants can be chosen independently
of l. L

Theorem 6. For any n ¥ BK, the sequence {mT p m[n]}m converges to a
unique limit.

Proof. For n1, 2 ¥ BK, we have successively:

CK3 |mn1
− mn2

| [ |FK(n1, mn1
) − FK(n1, mn2

)|

=|N − FK(n1, mn2
)|

=|FK(n2, mn2
) − FK(n1, mn2

)|

[ ||FFD(H (K)
n2

− mn2
) − FFD(H(K)

n1
− mn2

)||1

[ lK3cFL ||n1 − n2 ||L1(cell). (57)

The affirmation follows from the fact that {T p m[n]}m converges to the
same limit for any n ¥ SK

per. L

4.2. The Thermodynamic Limit

For a given K, let us denote by nK and mK the fixed point and the cor-
responding chemical potential of the map TK. We prepare now to prove the
last point of Theorem 3. We will use the following result from ref. 11.

Proposition 7. Let m ¥ [mm, mM] and V be a self-adjoint potential
such that:

||V( − 1
2 DhF+a)−1|| [ ca, (58)
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for all hF ¥ [0, 2p)3. Then:

||FFD ( − 1
2 DhF+V − m) − FFD ( − 1

2 DhF Œ+V − m)||1 [ ct. |hF− hF −|E, (59)

where ct. and E depend only on ca.

The thermodynamic limit of the Kohn-Sam equations will follow from
the following result.

Lemma 8. With the above notations,

||nK+1 − nK ||L1(cell) Q 0 as K Q .. (60)

Proof. There is a unique extension of nK in SK+1
per which will be

denoted by the same symbol nK. An important observation is that
nK ¥ BK+1. Let us prove first that

||[FFD(H(K+1)
nK

− mK) − FFD(H(K)
nK

− mK)](xF, xF)||L1(cell) (61)

goes to zero as K goes to infinity. Indeed, Eq. (61) can be evaluated as it
follows:

> 1
(K+1)3 C

q ¥ LK+1

FFD(H(K+1, q)
nK

− mK)(xF, xF)

−
1

K3 C
q ¥ LK

FFD(H(K, q)
nK

− mK)(xF, xF)>
L1(cell)

[ 51K+1
K

23

− 16 N0+
1

(K+1)3 C
q ¥ “LK+1

||FFD(H(K+1, q)
nK

− mK)||1

+
1

(K+1)3 C
q ¥ LK

||FFD(H(K+1, q)
nK

− mK) − FFD(H(K, q)
nK

− mK)||1, (62)

where “LK+1=LK+1 0LK. The first two terms above go to zero as K goes
to infinity. For the last term we use the following:

||FFD ( − 1
2 DhF+V − m) − FFD ( − 1

2 DhF Œ+V − − m)||
1

[ ||FFD ( − 1
2 DhF+V − m) − FFD ( − 1

2 DhF+V − − m)||
1

+||FFD ( − 1
2 DhF+V − − mK) − FFD ( − 1

2 DhF Œ+V − − m)||1

[ lcF ||V − V −||L1(cell)+ct. |hF− hF −|E. (63)
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Replacing hF and hF − by 2pq/(K+1) and 2pq/K, V and V − by V (K+1)[nK]
and V (K)[nK] and m by mK, Eq. (61) follows immediately from condition
(C3).

Let us denote by mnK
be the chemical potential corresponding to nK

when nK is extended in BK+1, i.e.:

(K+1)3 N0=Tr FFD(H(K+1)
nK

− mnK
). (64)

It follows that:

|mK − mnK
| Q 0 as K Q .. (65)

Indeed, from Proposition 5,

C |mK − mnK
| [

1
(K+1)3 |Tr FFD(H(K+1)

nK
− mK) − Tr FFD(H(K+1)

nK
− mnK

)|

[ : 1
(K+1)3 Tr FFD(H(K+1)

nK
− mK) − N0

:

[ : 1
(K+1)3 Tr FFD(H(K+1)

nK
− mK) −

1
K3 Tr FFD(H(K)

nK
− mK) :

[ ||[FFD(H(K+1)
nK

− mK) − FFD(H(K)
nK

− mK)](xF, xF)||L1(cell). (66)

Then Eq. (65) follows from Eq. (61).
Finally,

||nK+1 − nK ||L1(cell)=> C
.

m=1
(T p m

K+1[nK] − T p (m − 1)
K+1 [nK])>

L1(cell)

[ (1 − 2lLcF)−1 ||TK+1[nK] − nK ||L1(cell) (67)

and:

||TK+1[nK] − nK ||L1(cell)

=||[FFD(H (K+1)
nK

− mnK
) − FFD(H(K)

nK
− mK)](xF, xF)||L1(cell)

[ ||[FFD(H (K+1)
nK

− mnK
) − FFD(H(K+1)

nK
− mK)](xF, xF)||L1(cell)

+||[FFD(H(K+1)
nK

− mK) − FFD(H(K)
nK

− mK)](xF, xF)||L1(cell). (68)
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We already proved that the last term goes to zero as K Q .. Using the
monotonicity of the Fermi-Dirac, the second last term of Eq. (68) is equal
to

(K+1)−3 |FK+1(nK, mnK
) − FK+1(nK, mK)| [ C − |mnK

− mK |, (69)

where we used the same notations as in Proposition 5. L

Within our conditions, we cannot prove that {nK}K is a Cauchy
sequence and in consequence the problem of the thermodynamic limit is
not yet solved. However, using the weaker result of the above Lemma, we
can prove that the density of particle converges in a distributional sense as
the thermodynamic limit is considered. This will end the proof of Theorem 3.

Theorem 9. If nK is viewed as a linear functional over L.(cell),

n̂K(g)=F
cell

nK(xF) g(xF) dxF , g ¥ L.(cell), (70)

then {n̂K}K converges weakly in L.(cell)g.

Proof. From Banach-Alaoglu theorem (20) one knows that the closed
balls in L.(cell)g are compact in the weak topology. Then, because
||n̂K ||=N0, it follows that the sequence {n̂K}K has at least one accumulation
point. Due to the fact that

||n̂K+1 − n̂K ||=||nK+1 − nK ||L1(cell) ||0
K Q . 0, (71)

we can conclude that there is one and only one accumulation point. L

5. APPLICATION: THE LOCAL DENSITY APPROXIMATION

In the local density approximation, the effective potential becomes:

V[n]=(n − n0) f v+vxc(n), (72)

where vxc is a function of n instead of a functional. The value of vxc(n) is
equal to the exchange-correlation energy per particle of the corresponding
infinite, homogeneous system. Thus, there will be no volume dependence
for the exchange-correlation potential. The Hartree potential however will
depend, in general, on the volume. For finite range interactions, the
Hartree potential does not depend on the volume when the volume
becomes larger than the range of the interaction. This case has been con-
sidered in ref. 11 when the thermodynamic limit of the Hartree model was
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analyzed. We impose the following conditions on the two-body interaction
and exchange-correlation potential.

(P1) The singularity of the two-body potential is at least L2

integrable.

(P2) v(xF) ’ |xF|−r as |xF| Q . with r > 2.

(P3) vxc : (0, .) Q R is differentiable and there exists p \ 1 such that
t−1/pvxc(t) and t1 − 1/p dvxc

dt (t) are uniformly bounded over [0, .).

The conditions we imposed on the exchange-correlation include, for
example, the case of an homogeneous electron gas. For this particular
system, it was shown (21) that the low and high density behavior of the
exchange-correlation potential is dominated by the exchange part which is
proportional to n1/3. Thus, we can choose p=3 in (P3) to include this case.
Let us mention that, because of this behavior, the difference vxc(n1) −
vxc(n2) decays much slower than n1 − n2 in the low density limit. Thus, the
condition (C2) fails for this particular potential unless we can prove that
the density of particles is larger than a certain strictly positive value.

5.1. Estimates on the Hartree Potential

Let us point out that it is the Hartree potential that forces on us to
consider only short range interactions. If one compares the conditions
(P1)–(P3) with the conditions from ref. 10, one can see an improvement
because now we allow the interaction to decay as |xF|−r with r > 2 instead of
3. The neutrality condition will play an essential role here. Unfortunately,
we are still unable to include the Coulomb interaction in our theory. The
reason is that the Hartree potential increases too fast as the system
approaches the thermodynamic limit for long range interactions.

Theorem 10. Suppose the conditions (P1) and (P2) are satisfied.
Then, for n, n − ¥ SK

per and hF ¥ [0, 2p)3 the following are true:

(i) There exists cH
a , independent of K or hF ¥ [0, 2p)3, such that:

||(n − n0) f v ( − 1
2 DhF+a)−1|| [ cH

a . (73)

(ii) There exists LH, independent of K or hF ¥ [0, 2p)3, such that:

||(n − n −) f v||L1(cell) [ LH ||n − n −||L1(cell). (74)

(iii) The Hartree potential satisfies the condition (C3).
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Proof. Let us divide the Hartree potential in two parts,

C
i=1, 2

F
vol(i)

v(|xF, yF|)(n(yF) − n0(yF)) dyF — V (1)
H [n]+V(2)

H [n], (75)

where vol(1) contains the unit cell plus the adjacent cells and vol(2)=
T 0 vol (1). For n, n − ¥ SK

per, it follows

||V (1)
H [n] − V (1)

H [n −]||L1(cell) [ N sup
yF ¥ vol(1)

F
cell

dxF |v(|xF, yF|)| ||n − n −||L1(cell). (76)

where N is the number of cells in vol(1). The estimate makes sense because,
if the singularity of the interacting potential is L2 integrable, then it is also
L1 integrable. Moreover,

||V (1)
H [n]||L2(cell) [ 2NN0

=sup F
cell

dxF |v(yF1, xF) v(|xF, yF2 |)| , (77)

where the supremum goes over all yF1 and yF2 ¥ vol(1). Again, the estimate
makes sense because the singularity of the interaction is L2 integrable. The
last inequality combined with

||( − 1
2 DhF+a)−1f||L.(cell) [ k1/2

a ||f||L2(cell) (78)

from ref. 11, leads to:

||V (1)
H [n]( − 1

2 DhF+a)−1f||L2(cell)

[ ||V (1)
H [n]||L2(cell) ||( − 1

2 DhF+a)−1 f||L.(cell)

[ 2k1/2
a NN0

= sup
yF ¥ vol(1)

F
cell

dxF |v(|xF, yF|)|2 ||f||L2(cell). (79)

For the second term we write

V (2)
H [n](xF) − V (2)

H [n −](xF)

=C
RF

F
cell

v(|xF, yF+RF |)(n(yF) − n −(yF)) dyF

=C
RF

F
cell

[v(|xF, yF+RF |) − v(|xF, RF |)](n(yF) − n −(yF)) dyF, (80)
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where the sum goes over all the sites of the crystal less the origin and its
first neighbors. It is this place where we used the neutrality condition.
Then:

|V(2)
H [n](xF) − V (2)

H [n −](xF)|

[ C
RF

sup
xF, yF ¥ cell

|v(|xF, yF+RF |) − v(|xF, RF |)| ||n − n −||L1(cell)

[ C
RF

sup
xF, yF ¥ cell

|v(RF − xF+yF) − v(RF − xF)| ||n − n −||L1(cell), (81)

where the last sum goes over an infinite lattice. Denoting tF=RF/R, R=|RF |,
it follows from condition (P2) that, for large R,

|v(RF − xF+yF) − v(RF − xF)|=ct.R−r | |tF− (xF− yF)/R|−r − |tF− xF/R|−r|

[ ct.R−r | |tF− (xF− yF)/R| − |tF− xF/R|| (82)

and using | |aF+bF| − |aF− bF|| [ 2 |bF| we can conclude:

|v(RF − xF+yF) − v(RF − xF)| [ ct.R−r − 1. (83)

Thus the sum in Eq. (81) converges and we proved that there exists L (2)
H ,

independent of K, such that:

||V (2)
H [n] − V (2)

H [n −]||L.(cell) [ L (2)
H ||n − n −||L1(cell) (84)

which automatically leads to:

||V (2)
H [n] − V (2)

H [n −]||L1(cell) [ vcellL
(2)
H ||n − n −||L1(cell) . (85)

At this point we use the neutrality condition. Because n0 ¥ SK
per , we can set

nŒ=n0 above and by repeating the steps of Eq. (78), we can conclude

||V (2)
H [n]( − 1

2 DhF+a)−1|| [ 2k1/2
a N0v1/2

cell L
(2)
H . (86)

This ends the proof of point (i) and (ii). For point (iii), we notice that the
difference between V (K)

H [n] and V (K+1)
H [n] is given by:

C
RF ¥ “LK+1

F
cell

[v(|xF, yF+RF |) − v(|xF, RF |)](n(yF) − n0(yF)) dyF,

and the sum contains a number of terms proportional to (K+1)2 and R is
proportional to K. Then the affirmation follows from Eq. (83). L
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5.2. Estimates on the Exchange-Correlation Potential

Condition (P3) automatically leads to the condition (C1) for the
exchange-correlation potential.

Proposition 11. For n ¥ SK
per,

||vxc (n)( − 1
2 DhF+a)−1|| [ cxc

a . (87)

Proof.

||vxc(n)||Lp(cell)=5F
cell

|n(xF)−1/p vxc(n(xF))|p n(xF) dxF6
1/p

[ sup
t ¥ R+

t−1/pvxc(t) ||n||
1/p

L1(cell)

[ N1/p
0 sup

t ¥ R+

t−1/pvxc(t), (88)

and using Eq. (78)

||vxc (n)( − 1
2 DhF+a)−1 f||L2(cell)

[ ||vxc(n)||Lp(cell) ||( − 1
2 DhF+a)−1 f||Lq(cell)

[ v1/2 − 1/p
cell ||vxc(n)||Lp(cell) ||( − 1

2 DhF+a)−1 f||L.(cell)

[ k1/2
a v1/2 − 1/p

cell ||vxc(n)||Lp(cell) ||f||L2(cell). L (89)

Combining the above result with the results from the previous section, it
follows that the condition (C1) is satisfied for the local density approxima-
tion of the effective potential. We can also prove directly that the map T is
continuous on SK

per.

Proposition 12. Let p \ 1. Then

||vxc(n1) − vxc(n2)||Lp(cell) [ p sup
t ¥ R+

|t1 − 1/pv −

xc(t)| ||n1 − n2 ||
1/p

L1(cell)
, (90)

and consequently:

||TK[n1] − TK[n2]||L1(T) [ 2lcFLH ||n1 − n2 ||L1(T)

+2lcF pK3 − 3/p sup
t ¥ R+

|t1 − 1/pv −

xc(t)| ||n1 − n2 ||
1/p

L1(T)
,

(91)

for n1, 2 ¥ SK
per.
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Proof. For t1, t2 ¥ R+

vxc(t1) − vxc(t2)=F
t1/p

2

t1/p
1

dvxc

dt1/p dt1/p

[ p sup
t ¥ R+

|t1 − 1/pv −

xc(t)| |t1/p
1 − t1/p

2 |

[ p sup
t ¥ R+

|t1 − 1/pv −

xc(t)| |t1 − t2 |1/p,

for p \ 1. We can continue:

||vxc(n1) − vxc(n2)||Lp(cell)

[ 1F
cell

(p sup
t ¥ R+

|t1 − 1/pv −

xc(t)| |n1(xF) − n2(xF)|1/p)p dxF 2
1/p

=p sup
t ¥ R+

|t1 − 1/pv −

xc(t)| ||n1 − n2 ||
1/p

L1(cell)
. (92)

An important consequence of the above result is that any Lq norm with
q [ p of vxc(n1) − vxc(n2) is finite. In particular:

||vxc(n1) − vxc(n2)||L1(cell) [ pv1 − 1/p
cell sup

t ¥ R+

|t1 − 1/pv −

xc(t)| ||n1 − n2 ||
1/p

L1(cell)
. (93)

We notice that the limits on the chemical potential were based only on the con-
dition (C1). Then, following the steps of the proof of point (ii), Theorem 3,
and Proposition 4 we have successively:

||TK[n1] − TK[n2]||L1(T)

[ 2 C
q ¥ LK

||FFD(H(K, q)
n1

− mn2
) − FFD(H(K, q)

n2
− mn2

)||1

[ 2lcF(||(n1 − n2) f v||L1(T)+||vxc(n1) − vxc(n2)||L1(T)). L (94)

Of course, this result is far from condition (C3) because, for realistic
exchange-correlation potentials we must choose p \ 1 above. The above
result however, is the best estimate one can get on the map T if only L1

estimates on the density of particles are used. To complete our analysis we
need L. estimates on the density of particles.

Lemma 13. Let A and W be two self-adjoint operators on L2(cell)
such that A−1 exists,

sup
xF, yF ¥ cell

|A−1(xF, yF)| [ q < ., (95)
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and AWA is bounded. Then:

|W(xF, xF)| [ vcellq
2 ||AWA||. (96)

Proof. From the above conditions it follows that

f(yF)=A−1(yF, xF) ¥ L2(cell). (97)

Thus:

|W(xF, xF)|=Of, (AWA) fP [ ||AWA|| ||f||2
L2(cell) (98)

[ vcellq
2 ||AWA||. L

Theorem 14. For n ¥ SK
per,

nmin − ct.l [ ||TK[n]||L. [ nmax+ct.l, (99)

where:

nmin=
1

vcell
inf

hF ¥ [0, 2p)3
Tr FFD

1 −
1
2

DhF − mm
2 (100)

nmax=
1

vcell
sup

hF ¥ [0, 2p)3
Tr FFD

1 −
1
2

DhF − mM
2 .

and ct. is K independent.

Proof. In the previous Lemma, we choose:

Wq=FFD(H(K, q)
n − mn) − FFD ( − 1

2 DhFq − mn) (101)

and

Aq=( − 1
2 DhFq +a)2. (102)

In this case A−1
q can be computed exactly (11) and

|A−1
q (xF, yF)| [

1

2p `2a
C

RF ¥ C

e−2a |xF− yF− RF |. (103)
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Thus, the conditions on Aq in the previous Lemma are satisfied. Moreover,
because

Wq=
1
2
1e−b

2 H(K, q)
n − e−b

2 (−1
2 DhFq

)2 cosh 5b

2
(H (K, q)

n − mn)6
−1

+
1
2

e
b

4 DhFq 1cosh 5b

2
(H (K, q)

n − mn)6
−1

− cosh 5b

2
1 −

1
2

DhFq − mn
26−12

(104)

and

cosh 5b

2
(H(K, q)

n − mn)6
−1 1 −

1
2

DhFq +a2
2

(105)

and

( − 1
2 DhFq +a)2 e

b

4 DhFq (106)

are of trace class, it follows:

||AqWqAq ||1 [
1
2
>cosh 5b

2
(H(K, q)

n − mn)6
−1 1 −

1
2

DhFq +a2
4>

× ||e−b

2 H(K, q)
n − e−b

2 (−1
2 DhFq

)||1

+
1
2
>1 −

1
2

DhFq +a2
4

e
b

4 DhFq >

×>cosh 5b

2
(H(K, q)

n − mn)6
−1

− cosh 5b

2
1 −

1
2

DhFq − mn
26−1>

1
.

(107)

Using Proposition 5, we can continue:

||AqWqAq ||1 [
l

2
3 cF1

(1 − lca)4 sup
x ¥ [E0, .)

(x+a)4 cosh 5b

2
(x − mn)6

−1

+cF2
sup

x ¥ [0, .)
(x+a)4 e−b

2 (x − mn)4 ||V (K)[n]||L1(cell), (108)

where F1(z)=e−b

2 z and F2(z)=cosh[b
2 (z − mn)]−1. Moreover,

||V (K)[n]||L1(cell) [ 2N0LH+v1 − 1/p
cell ||vxc(n)||Lp(cell)

[ 2N0LH+N1/p
0 v1 − 1/p

cell sup
t ¥ R+

t−1/pvxc(t).
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Because mn ¥ [mm, mM], we can conclude that

||AqWqAq || [ ||AqWqAq ||1 [ ct.l, (109)

where ct. is independent of q or K. Consequently, ||Wq ||L.(cell) [ ct.l, where
ct. is again independent of q or K. Then the affirmation follows from

||TK[n] − (1+eb(−1
2 D − mn))−1 (xF, xF) ||L.(T)

=>K−3 C
q ¥ LK

Wq(xF, xF)>
L.(cell)

[ ct.l (110)

and

||FFD( − 1
2 D − mn)(xF, xF)||L.(T)

− ||TK[n] − FFD( − 1
2 D − mn)(xF, xF)||L.(T)

[ ||TK[n]||L. [ ||FFD( − 1
2 D − mn)(xF, xF)||L.(T)

+||TK[n] − FFD( − 1
2 D − mn)(xF, xF)||L.(T), (111)

by observing that

nmin [ ||FFD( − 1
2 D − mn)(xF, xF)||L.(T) [ nmax. L (112)

Let us now return to the last condition (C2) which remains to verified.
We define the set B as a the strip in L.(cell):

B={n ¥ L.(cell), nmin − e [ n [ nmax+e, a.e.}, (113)

where e is a positive constant such that nmin > e. Observing that v −

xc(t) is
bounded over I=[nmin − e, nmax+e], it follows:

||vxc(n1) − vxc(n2)||L1(cell)=F
cell

:F n2(xF)

n1(xF)

dvxc(t)
dt

: dxF

[ F
cell

sup
t ¥ I

|v −

xc(t)| |n1(xF) − n2(xF)| dxF

[ sup
t ¥ I

|v −

xc(t)| ||n1 − n2 ||L1(cell). (114)
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where we omitted a set of zero measure where n(xF) can have values which
are not in the interval I. For l smaller than a certain value, independent of
K, it follows from Theorem 14 that TK[SK

per] … BK which completes our
analysis of the local density approximation.
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